153 research outputs found

    Comparison of a Minimally Invasive Tissue-Sparing Posterior Superior (TSPS) Approach and the Standard Posterior Approach for Hip Replacement

    Get PDF
    Purpose. The purpose of this study is to compare the functional and clinical outcomes, blood loss, complication rate, and hospital length of stay (LOS) of total hip replacement (THR) using a minimally invasive tissue-sparing posterior superior (TSPS) approach and the standard posterior approach. Materials and Methods. This retrospective, observational, double-centered study included 38 patients undergoing hip replacement. The patents were divided into two groups: control group (19 patients), who underwent surgery with the standard posterior approach, and treatment group (19 patients), who received the same type of implant with ceramic-on-ceramic bearing via the TSPS approach. Hemoglobin level was assessed preoperatively, on first and second postoperative days, and on discharge day. Harris hip score and Western Ontario and McMaster Universities Arthritis Index were used to measure the clinical and functional outcomes. Hospital LOS and incidence of early and late complications were assessed in both groups. Postoperative anteroposterior pelvis X-ray was performed to assess the correct positioning of implants. Results. Better early clinical outcomes (p=0.0155), lesser blood loss (p < 0.0001), and reduced hospital LOS (p < 0.0001) were observed in the TSPS group than in the control group. No major adverse effects occurred in both groups, and a satisfactory implant orientation was achieved in all patients. Conclusions. The TSPS approach is a reliable minimally invasive procedure for THR as it allows an accurate orientation of the components and provides better early postoperative functional outcomes, faster recovery, significantly lower blood loss, and shorter hospital LOS than the standard posterior approach. However, further research is needed to confirm the promising results and cost-effectiveness of the TSPS approach in larger cohorts with a longer follow-up period

    Non-Linear Frequency Dependence of Neurovascular Coupling in the Cerebellar Cortex Implies Vasodilation-Vasoconstriction Competition

    Get PDF
    Neurovascular coupling (NVC) is the process associating local cerebral blood flow (CBF) to neuronal activity (NA). Although NVC provides the basis for the blood oxygen level dependent (BOLD) effect used in functional MRI (fMRI), the relationship between NVC and NA is still unclear. Since recent studies reported cerebellar non-linearities in BOLD signals during motor tasks execution, we investigated the NVC/NA relationship using a range of input frequencies in acute mouse cerebellar slices of vermis and hemisphere. The capillary diameter increased in response to mossy fiber activation in the 6-300 Hz range, with a marked inflection around 50 Hz (vermis) and 100 Hz (hemisphere). The corresponding NA was recorded using high-density multi-electrode arrays and correlated to capillary dynamics through a computational model dissecting the main components of granular layer activity. Here, NVC is known to involve a balance between the NMDAR-NO pathway driving vasodilation and the mGluRs-20HETE pathway driving vasoconstriction. Simulations showed that the NMDAR-mediated component of NA was sufficient to explain the time course of the capillary dilation but not its non-linear frequency dependence, suggesting that the mGluRs-20HETE pathway plays a role at intermediate frequencies. These parallel control pathways imply a vasodilation-vasoconstriction competition hypothesis that could adapt local hemodynamics at the microscale bearing implications for fMRI signals interpretation

    Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue

    Get PDF
    The cerebellar microcircuit has been the work bench for theoretical and computational modeling since the beginning of neuroscientific research. The regular neural architecture of the cerebellum inspired different solutions to the long-standing issue of how its circuitry could control motor learning and coordination. Originally, the cerebellar network was modeled using a statistical-topological approach that was later extended by considering the geometrical organization of local microcircuits. However, with the advancement in anatomical and physiological investigations, new discoveries have revealed an unexpected richness of connections, neuronal dynamics and plasticity, calling for a change in modeling strategies, so as to include the multitude of elementary aspects of the network into an integrated and easily updatable computational framework. Recently, biophysically accurate realistic models using a bottom-up strategy accounted for both detailed connectivity and neuronal non-linear membrane dynamics. In this perspective review, we will consider the state of the art and discuss how these initial efforts could be further improved. Moreover, we will consider how embodied neurorobotic models including spiking cerebellar networks could help explaining the role and interplay of distributed forms of plasticity. We envisage that realistic modeling, combined with closed-loop simulations, will help to capture the essence of cerebellar computations and could eventually be applied to neurological diseases and neurorobotic control systems

    Cryogenic Detectors for Rare Alpha Decay Search: A New Approach

    Get PDF
    The detection of 148^{148} Sm alpha decay with a precise measured half-life of (6.4−1.3+1.2)×1015y\left( {6.4_{-1.3}^{+1.2} }\right) \times 10^{15}y and a Q-value of 1987.3 ±\pm 0.5 keV was achieved by a new experimental approach, where a conventional ZnWO 4_{4} scintillating crystal doped with enriched 148^{148} Sm isotope is operated as a cryogenic scintillating bolometer (phonon and light channel) at mK-temperatures

    EEG Responses to TMS Are Sensitive to Changes in the Perturbation Parameters and Repeatable over Time

    Get PDF
    BACKGROUND: High-density electroencephalography (hd-EEG) combined with transcranial magnetic stimulation (TMS) provides a direct and non-invasive measure of cortical excitability and connectivity in humans and may be employed to track over time pathological alterations, plastic changes and therapy-induced modifications in cortical circuits. However, the diagnostic/monitoring applications of this technique would be limited to the extent that TMS-evoked potentials are either stereotypical (non-sensitive) or random (non-repeatable) responses. Here, we used controlled changes in the stimulation parameters (site, intensity, and angle of stimulation) and repeated longitudinal measurements (same day and one week apart) to evaluate the sensitivity and repeatability of TMS/hd-EEG potentials. METHODOLOGY/PRINCIPAL FINDINGS: In 10 volunteers, we performed 92 single-subject comparisons to evaluate the similarities/differences between pairs of TMS-evoked potentials recorded in the same/different stimulation conditions. For each pairwise comparison, we used non-parametric statistics to calculate a Divergence Index (DI), i.e., the percentage of samples that differed significantly, considering all scalp locations and the entire post-stimulus period. A receiver operating characteristic analysis showed that it was possible to find an optimal DI threshold of 1.67%, yielding 96.7% overall accuracy of TMS/hd-EEG in detecting whether a change in the perturbation parameters occurred or not. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that the EEG responses to TMS essentially reflect deterministic properties of the stimulated neuronal circuits as opposed to stereotypical responses or uncontrolled variability. To the extent that TMS-evoked potentials are sensitive to changes and repeatable over time, they may be employed to detect longitudinal changes in the state of cortical circuits

    Reconstruction and Simulation of a Scaffold Model of the Cerebellar Network

    Get PDF
    Reconstructing neuronal microcircuits through computational models is fundamental to simulate local neuronal dynamics. Here a scaffold model of the cerebellum has been developed in order to flexibly place neurons in space, connect them synaptically, and endow neurons and synapses with biologically-grounded mechanisms. The scaffold model can keep neuronal morphology separated from network connectivity, which can in turn be obtained from convergence/divergence ratios and axonal/dendritic field 3D geometries. We first tested the scaffold on the cerebellar microcircuit, which presents a challenging 3D organization, at the same time providing appropriate datasets to validate emerging network behaviors. The scaffold was designed to integrate the cerebellar cortex with deep cerebellar nuclei (DCN), including different neuronal types: Golgi cells, granule cells, Purkinje cells, stellate cells, basket cells, and DCN principal cells. Mossy fiber inputs were conveyed through the glomeruli. An anisotropic volume (0.077 mm3) of mouse cerebellum was reconstructed, in which point-neuron models were tuned toward the specific discharge properties of neurons and were connected by exponentially decaying excitatory and inhibitory synapses. Simulations using both pyNEST and pyNEURON showed the emergence of organized spatio-temporal patterns of neuronal activity similar to those revealed experimentally in response to background noise and burst stimulation of mossy fiber bundles. Different configurations of granular and molecular layer connectivity consistently modified neuronal activation patterns, revealing the importance of structural constraints for cerebellar network functioning. The scaffold provided thus an effective workflow accounting for the complex architecture of the cerebellar network. In principle, the scaffold can incorporate cellular mechanisms at multiple levels of detail and be tuned to test different structural and functional hypotheses. A future implementation using detailed 3D multi-compartment neuron models and dynamic synapses will be needed to investigate the impact of single neuron properties on network computation

    Initial evaluation of the "Trauma surgery course"

    Get PDF
    BACKGROUND: The consequence of the low rate of penetrating injuries in Europe and the increase in non-operative management of blunt trauma is a decrease in surgeons' confidence in managing traumatic injuries has led to the need for new didactic tools. The aim of this retrospective study was to present the Corso di Chirurgia del Politrauma (Trauma Surgery Course), developed as a model for teaching operative trauma techniques, and assess its efficacy. METHOD: the two-day course consisted of theoretical lectures and practical experience on large-sized swine. Data of the first 126 participants were collected and analyzed. RESULTS: All of the 126 general surgeons who had participated in the course judged it to be an efficient model to improve knowledge about the surgical treatment of trauma. CONCLUSION: A two-day course, focusing on trauma surgery, with lectures and life-like operation situations, represents a model for simulated training and can be useful to improve surgeons' confidence in managing trauma patients. Cooperation between organizers of similar initiatives would be beneficial and could lead to standardizing and improving such courses

    Resolved stellar mass maps of galaxies. I: method and implications for global mass estimates

    Full text link
    (Abridged) We introduce a novel technique to construct spatially resolved maps of stellar mass surface density in galaxies based on optical and near IR imaging. We use optical/NIR colour(s) to infer effective stellar mass-to-light ratios (M/L) at each pixel, which are then multiplied by the surface brightness to obtain the local stellar surface mass density. We build look-up tables to express M/L as a function of colour(s) by marginalizing over a Monte Carlo library of 50,000 stellar population synthesis (SPS) models by Charlot & Bruzual (2007), which include a revised prescription for the TP-AGB stellar evolutionary phase, with a wide range of dust exinctions. In order to extract reliable flux and colour information at any position in the galaxy, we perform a median adaptive smoothing of the images that preserves the highest possible spatial resolution. As the most practical and robust, and hence fiducial method, we express the M/L in the H band as a function of (g-i) and (i-H). Stellar mass maps computed in this way have a typical accuracy of 30 per cent or less at any given pixel, determined from the scatter in the models. We compare maps obtained with our fiducial method with those derived using other combinations of bandpasses and the old BC03 TP-AGB prescription. Finally, we compare total stellar mass estimates obtained by integrating resolved mass maps with those obtained with unresolved photometry. In galaxies with evident dust lanes, unresolved estimates may miss up to 40 per cent of the total stellar mass because dusty regions are strongly under-represented in the luminous fluxes.Comment: Accepted for publication on MNRAS on Aug 10th 2009. 21 pages, 14 figures (see http://www.mpia.de/homes/zibetti/mass_maps_I.pdf for full resolution). One appendix added and minor changes done wrt to original submissio

    Serum IgG antibodies from pregnant women reacting to mimotopes of simian virus 40 large T antigen, the viral oncoprotein

    Get PDF
    Simian virus 40 (SV40) large T antigen (LT) coding sequences were revealed in different human samples, whereas SV40 antibodies (Ab) were detected in human sera of cancer patients and healthy individuals, although with a lower prevalence. Previous studies carried out by the neutralization assay gave a SV40 seroprevalence, in the general population, up to 8%, although higher rates, 12%, were detected in kidney transplant children, in a group of HIV-positive patients, and in healthy females. In this study, serum samples from pregnant women, together with those from non-pregnant women, were analyzed to check the prevalence of IgG Ab reacting to SV40 LT antigens. Serum samples were collected from pregnant and non-pregnant women, with the same mean age. Women were in the range of 15-48 years old. Samples were assayed by an indirect ELISA employing specific SV40 LT mimotopes as antigens, whereas functional analysis was performed by neutralization of the viral infectivity in cell cultures. As a control, sera were analyzed for Ab against BK polyomavirus (BKPyV), which is a human polyomavirus homologous to SV40. Statistical analyses employed chi-square with Yates' correction, and Student's t tests. Indirect ELISAs indicated that pregnant women tested SV40 LT-positive with a prevalence of 17% (23/134), whereas non-pregnant women had a prevalence of 20% (36/180) (P > 0.05). Ab against BKPyV were detected with a prevalence of 80% in pregnant women and with a prevalence of 78% in non-pregnant women. These data indicate that SV40 infects at a low prevalence pregnant women. We may speculate that SV40, or a close human polyomavirus still undetected, could be transmitted from mother to fetus

    HNF1B polymorphism influences the prognosis of endometrial cancer patients: A cohort study

    Get PDF
    Background: HNF1B (formerly known as TCF2) gene encodes for a transcription factor that regulates gene expression involved in normal mesodermal and endodermal developments. A close association between rs4430796 polymorphism of HNF1B gene and decreased endometrial cancer (EC) risk has been demonstrated. The aim of the current study was to test the hypothesis that rs4430796 polymorphism can influence the prognosis of EC patients. Methods: Retrospective cohort study. Clinical and pathological data were extrapolated and genotypes were assessed on formalin-fixed and paraffin-embedded non-tumour tissues. The influence of patients' genotype on overall survival and progression free survival were our main outcome measures. Results: A total of 191 EC patients were included in the final analysis. Overall survival differed significantly (P = 0.003) among genotypes. At multivariate analysis, a significant (P < 0.05) effect on overall survival was detected for FIGO stage, and rs4430796 polymorphism of HNF1B gene. After grouping EC patients according to adjuvant treatment, rs4430796 polymorphism resulted significantly (P < 0.001) related to overall survival only in subjects who received radiotherapy plus chemotherapy. A significant (P = 0.014) interaction between rs4430796 polymorphism and chemo-radiotherapy was also detected. Finally, only a trend (P = 0.090) towards significance was observed for rs4430796 polymorphism effect on progression free survival. Conclusions: rs4430796 polymorphism of HNF1B gene influences independently the prognosis of EC patients with a potential effect on tumor chemo-sensitivity
    • …
    corecore